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Chongyangni,  Seoul,  South Korea 
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Abstract. Shear  Row birefringence of simple fluids was studied by use of non-equilibrium 
molecular dynamics simulation, the results of which were comparable with the theoretical 
values calculated on the basis of the shear distortion of the radial pair  distribution function 
for shear rates below E,: = 2.0 ( in  Lennard-Jones reduced units) .  

1. Introduction 

Simple liquids of spherical molecules under shear flow were shown to exhibit a flow 
birefringence due to an anisotropic distortion in the radial pair distribution function 
both theoretically (Eisenschitz 1949, Champion 1958) and experimentally (Champion 
1960). 

Many subsequent theoretical works on the flow birefringence, however, are based 
on the assumption that the fluids are composed of anisotropic molecules (Jerrad 1959). 
The theories of the form and the orientation birefringence for the fluids predict 
absolutely zero birefringence for fluids of atoms or spherical molecules where the 
atoms or molecules do not possess intrinsic optical anisotropy. Hence the fluids of 
theoretical as well as experimental interest with respect to the flow birefringence have 
been restricted to such systems as dilute solutions of colloidal particles or polymeric 
fluids (Stein 1964, Kestens 1975). 

However, the well known empirical relation between the observed flow birefringence 
A n  and the shear rate E widely accepted in engineering applications of the flow 
birefringence (Pindera and Krishnamurthy 1978) shows A n  = KTE, where K is the 
empirical Kundt constant and T represents the Maxwell viscoelastic relaxation time. 
Even though this relationship immediately suggests, as first noticed by Eisenschitz 
(1949) and Champion (19581, that at low shear rates the flow birefringence may readily 
be observed only in extremely viscous fluids, it also indicates that the flow birefringence 
may not vanish even in monatomic fluids possessing neither the form nor orientation 
birefringence if the shear rate is so high as to make T E  appreciable. Approaching the 
critical point, fluids may exhibit extremely long structural relaxation times in the 
presence of shear flow and a strong shear may then be obtained at normal shear rates 
(Onuki and Kawasaki 1979a, b). 
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Unlike in solids where continuum mechanics works so well, the fluids cannot 
support elastic stress for long enough and we must investigate the details of molecular 
motions and structural relaxations to solve this problem of shear-induced birefringence 
in simple fluids. We should also take account of the molecular interactions which may 
be neglected in the usual cases of the form or orientation birefringence due to very 
low concentrations of dilute suspensions. 

A very high shear rate or large amplitude shearing in simple liquids may also bring 
about non-linear shear strains (Heyes e t  a1 1980, Hess and  Hanley 1983, Schwarzl and  
Hess 1986) and possibly a phase transition anomaly in both dynamical and structural 
properties of the liquids (Erpenbeck 1984, Heyes 1986a, b, Kirkpatrick and  Nieuwoudt 
1986, Evans and Morriss 1986). Such dynamical changes may be best confirmed by 
depolarised scattering (Cohen and Leal 1978, Onuki and Kawasaki 1979b, Kim and 
Kim 1986, Schwarzl and  Hess 1986) while structural changes may well be confirmed 
by flow birefringence. 

We want to show here by the molecular dynamics computer calculation that at 
high shear rates simple liquids may also have a large flow birefringence. 

2. Calculation of flow birefringence 

If we take the streamline direction of the shear flow in the xz plane to be the x axis 
&, the flow birefringence A n  is given by a C G S  unit equation (Kirkwood 1967, Peterlin 
and Munk 1972) 

where no is the equilibrium refractive index of the fluid, N /  V is the average number 
density of the atoms and L T ~ . ~ ,  Gzz, Ex:  represent tensor components of the effective 
atomic polarisability. 

In the dipole-induced-dipole ( D I D )  approximation the induced-dipole moment of 
an  atom i in the N-atomic system under the external field Eo is given by (Alder er a1 
1975) 

where cyo is the free atomic polarisability, [ TJ]  = (32,Jc?,, - [ Z ] ) / r i ,  ZS = r , f / r u  and r0 is 
the distance between the ith and j t h  atoms. We take an average to obtain GY, as 

U p  to order of cy; we thus obtain from equations (2) and (3) 
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Similarly, we can obtain 

From equations ( l ) ,  (4), ( 5 )  and  (6) we obtain 

We performed the non-equilibrium molecular dynamics calculations to obtain A n  
for the N = 108 Lennard-Jones system at p =0.8442 and T =0.772, simulating the 
argon-like fluid near the triple point under shear flow. We have also calculated for 
the same system the shear stress given by 

1 x Z -  a4 
v ,=I r,, ar,; 

Cr,; = -- ( f mv,,u,, - t  1 c - -) 
where C$ is the Lennard-Jones interaction potential. 

To compare our results of the molecular dynamics calculation with the empirical 
relation A n  = K T ~  we have also calculated the shear rigidity modulus G, from (Zwanzig 
and Mountain 1965) 

d 
d r g d r )  z { r 4 d C $ / d r }  (9) 

where the radial distribution function g,(r) was calculated as a part of the molecular 
dynamics. We have equilibrated the system for 4100Ar ( A t  = 0.005) before applying 
the shear flow. A subtraction technique (Heyes et a1 1980) was used for each segmental 
run of 400At to extract the shear field effect from the equilibrium noise background, 
and the steady state values of observables were determined by averaging over six 
segments. Typical runs for An at various shear rates are shown in figures 1 and 2. In 

I I I 
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Figure 1. Time dependence of flow birefringence at various shear rates: 0, i =0.1; 
A, E = 1.0; 0, C = 1.5 .  
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Figure 2. Time dependence of flow birefringence: 0, E = 2.0; 0, E = 5.0. 

Table 1. Dependence of flow birefringence (An), Maxwell relaxation time ( 7 )  and  Kundt  
constant ( K )  on  shear rate ( E y 2 ) .  The shear rate and Maxwell relaxation time are in 
Lennard-Jones reduced units (see, e.g., Heyes et a /  (1983) for the Lennard-Jones units of 
various quantit ies).  

0.1 0.28 x lo-* 0.47 0.06 
0.5 0.54 x lo-' 0.27 0.04 
1 .o 0.72 x lo-' 0.18 0.04 
1.5 0.72 x lo-* 0.12 0.04 
2.0 0.56 x IO-' 0.07 0.04 

table 1 we have shown the shear rate dependence of various quantities as obtained in 
the present work. We have used ax=( t + CO) = Grix17, with G, = 22.5 as calculated in 
this work, to obtain the Kundt constant K from K = An/ (EkZ7) .  

3. Discussions and conclusion 

The sum in equation ( 7 )  can be transformed into the integral forms using the radial 
distribution function g( r)  as follows: 
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Under the uniform and homogeneous shear flow in the xz plane the distortion of the 
radial distribution function can be written in a form (Pryde 1966, Heyes et a1 1980), 
neglecting the smaller non-Newtonian terms (Hess and Hanley 1982), 

g ( r )  =go(r)( l  +f(I), 4)) 

= go( r )  + (gb(r)xz/ r)A&xz + i[(go(r)z'/ r )  
-(gb(r)/r3)~2z2+(gi(r)/r2)~2z2](A~x2)2+. . . 

= go( r )  + AE,,gb( r ) r  sin 8 cos 8 cos 4 
x ( g b ( r ) r  - g b ( r ) r  sin' 8 cos' 4 + g i ( r ) r '  sin2 e cos2 4)  cos' I )  +.  . . (12) 

where ( r ,  0, 4)  are spherical coordinates and AE,, is a recoverable shear strain. We 
can obtain from equations (7 ) ,  ( lo ) ,  (11) and (12) in the first-order approximation 
with respect to AE,; 

Molecular dynamics study (Heyes et a1 1980) proved the validity of AE,, = a,,/ G, = E,:T 

for a wide range of shear rates, from which we can rewrite (13) as An = K&,,T, where 
K is given by 

In general we have j v g ' ( r )  d r  = N /  V. Hence we find 

If we substitute no = 1, p = 0.8442 and a. = 0.0416 (Alder eta1 1975), we obtain K = 0.02. 
This value of the first-order theory is less than our computer simulation value of 
K = 0.04 at below d,. = 2.0 as can be seen from table 1. We may ascribe this discrepancy 
to the shortcomings in both our expansions of the distorted radial distribution function 
and our computer simulations. Our theory neglected any higher-order contribution of 
order higher than cy; to the effective polarisability and also higher-order terms of order 
higher than AE,, in the shear-induced distortion of the radial distribution function. 
Meanwhile the molecular dynamics simulation cannot avoid the finite-size effects and 
some artefact anisotropy is introduced by the periodic boundary conditions (Mandell 
1976, Pratt and Haan 1981) and we need much higher shear rates than experimentally 
available to see the shearing effects. It thus seems that our first-order theory may 
underestimate the K value while the molecular dynamics calculation overestimates it 
as compared with the experimental reality. 

However, our molecular dynamics values of flow birefringence at very high shear 
rates of the order of 5 x 10" s-' (for argon) shown in table 1 agree with the experimental 
value of flow birefringence An = 7.1 x lo-* for spherical simple molecules measured at 
the shear rate of 5 x lo4 s-l ( - 0 . 6 4 ~  in Lennard-Jones reduced units for CCI,) 
(Champion 1960). 

At extremely high shear rates when the kinetic terms become more important our 
algorithm for the shear stress calculation should be modified to the SLLOD type algorithm 
(Evans and Morriss 1984, Heyes 1986a) and the shear rigidity modulus G,, is no 
longer constant but drops sharply (Heyes 1986a, b). Our d,, = 5.0 result of figure 2 
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should not, therefore, be taken too seriously. However, it shows qualitatively that an  
extremely high shear rate gives the overshoot response before the steady state is reached. 
This may be an indication that the extremely high stress built up  in the simple 
Lennard-Jones liquid may relax through a phase transition, which may correspond to 
the string phase formation as observed in the molecular dynamics study (Heyes 
1986a, b)  in conformity with the cigar-type growth of correlation in the fluids under 
strong shear (Onuki and  Kawasaki 1979). 
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